Search results for #ModularArithmetic
Find all ordered pairs #ModularArithmetic #NumberTheory #GreatestCommonDivisor #NumberTheoryUnsolved
Least k for which there exist x,y,z #ModularArithmetic #PigeonholePrinciple #Inequalities #CombinatoricsProposed #Combinatorics
Albanian TST 2014 5th problem #ModularArithmetic #NumberTheoryProposed #NumberTheory
China Mathematics Olympiads (National Round) 2008 Problem 6 #ModularArithmetic #Algebra #Polynomial #Vieta #NumberTheoryUnsolved #NumberTheory
One of USAMO's hardest NT problems #ModularArithmetic #Geometry #Algebra #Polynomial #FractionalPart #USAMO
Sets of of divisors #Ratio #FloorFunction #ModularArithmetic #NumberTheoryProposed #NumberTheory
IMO 1974 Binomial Sum #NumberTheory #Summation #BinomialCoefficients #Divisibility #ModularArithmetic #IMO #IMO1974
21 distinct prime divisors #ModularArithmetic #Logarithms #NumberTheoryProposed #NumberTheory
IMO ShortList 2002, number theory problem 5 #ModularArithmetic #NumberTheory #IMOShortlist #GeneratingFunctions #RootsOfUnity #ComplexNumbers #Hi
18th ibmo - argentina 2003/q6 #Quadratics #Induction #ModularArithmetic #NumberTheoryUnsolved #NumberTheory
prime numbers equation volume 2 #ModularArithmetic #NumberTheory #NumberTheoryProposed
Colored circle intersections, german pre-tst 2005, problem 6 #Geometry #ModularArithmetic #Combinatorics #Circles #Intersection #IMOShortlist #DoubleCounting
2 * x^4 + 1 = y^2 #ModularArithmetic #NumberTheory #GreatestCommonDivisor #NumberTheoryUnsolved
Show that every prime number n has property P #ModularArithmetic #NumberTheory #Divisibility #PrimeNumbers #CompositeNumbers #IMOShortlist
Hope this helped! If you're learning number theory or just solving mod problems in CP, understanding modular inverse is a game-changer 🚀 RT 🔁 to help someone struggling with this. #CP #DSA #ModularArithmetic #Math
Sequence of Rational Numbers #PigeonholePrinciple #ModularArithmetic #NumberTheory #RelativelyPrime #CIGARETTES #Hi
2-adic Valuation Unbounded #NumberTheory #Padic #ModularArithmetic #NumberTheorySolved
m^6 = n^(n+1)+n-1 #Algebra #Polynomial #NumberTheory #GreatestCommonDivisor #ModularArithmetic #NumberTheoryProposed #NiceProblem
symbol pushing #NumberTheory #ModularArithmetic #ELMOShortlist
Subset Y, |Y| = 2007 and mod(a - b + c - d + e, 47) <> 0 #ModularArithmetic #NumberTheory #Divisibility #ExtremalCombinatorics #AdditiveCombinatorics #IMOShortlist
